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ABSTRACT
This paper explores three different model components to
improve predictive performance over the ViEWS benchmark: a
class of neural networks that account for spatial and temporal
dependencies; the use of CAMEO-coded event data; and the
continuous rank probability score (CRPS), which is a proper
scoring metric. We forecast changes in state based violence
across Africa at the grid-month level. The results show that
spatio-temporal graph convolutional neural network models
offer consistent improvements over the benchmark. The
CAMEO-coded event data sometimes improve performance,
but sometimes decrease performance. Finally, the choice of
performance metric, whether it be the mean squared error or
a proper metric such as the CRPS, has an impact on model
selection. Each of these components–algorithms, measures,
and metrics–can improve our forecasts and understanding
of violence.

En este art�ıculo se exploran tres componentes diferentes del
modelo para mejorar el rendimiento predictivo con respecto a
la referencia ViEWS: una clase de redes neuronales que tienen
en cuenta las dependencias espaciales y temporales, el uso de
datos de eventos codificados por CAMEO, y la puntuaci�on de
probabilidad de rango continuo (CRPS), que es una m�etrica de
puntuaci�on adecuada. Predecimos los cambios en la violencia
estatal en toda �Africa a nivel mensual. Los resultados muestran
que los modelos de redes neuronales convolucionales de gr�afi-
cos espacio-temporales ofrecen mejoras consistentes sobre el
punto de referencia. Los datos de eventos codificados por
CAMEO a veces mejoran el rendimiento, pero otras veces lo
empeoran. Por �ultimo, la elecci�on de la m�etrica de rendimiento,
ya sea el error cuadr�atico medio o una m�etrica propia como la
CRPS, influye en la selecci�on del modelo. Cada uno de estos
componentes (algoritmos, medidas y m�etricas) puede mejorar
nuestras previsiones y nuestra comprensi�on de la violencia.
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Cet article explore trois composantes de mod�eles diff�erentes
pour am�eliorer les performances pr�edictives par rapport �a la
r�ef�erence de ViEWS (Violence early-warning system, syst�eme
d’alerte pr�ecoce sur la violence) : une classe de r�eseaux de
neurones qui prennent en compte les d�ependances spatiales
et temporelles ; l’utilisation de donn�ees d’�ev�enements cod�ees
par CAMEO (Conflict and Mediation Events Observations,
Observation des �ev�enements de m�ediation et de conflit) ; et
le CRPS (Continuous Rank Probability Score, Score de proba-
bilit�e de cat�egories ordonn�ees de variables continues), qui est
une m�etrique de score propre. Nous effectuons des
pr�edictions des �evolutions de la violence �etatique en Afrique
au niveau grille/mois. Les r�esultats montrent que les mod�eles
�a r�eseaux convolutifs de neurones graphiques spatiotemporels
offrent des am�eliorations constantes par rapport �a la
r�ef�erence. Les donn�ees d’�ev�enements cod�ees par CAMEO
am�eliorent parfois les performances mais peuvent aussi parfois
les r�eduire. Enfin, le choix de la m�etrique de performances,
qu’il s’agisse de l’erreur quadratique moyenne ou d’une
m�etrique de score propre telle que le CRPS, a un impact sur
la s�election du mod�ele. Chacune de ces composantes - algo-
rithmes, mesures et m�etriques - peut am�eliorer nos pr�evisions
et notre compr�ehension de la violence.

Introduction

Our approach to improving the prediction of fatalities in the PRIO-GRID
focuses on three major model components: the input data for the model, the
learning algorithm, and the forecast evaluation metrics. We focus on
monthly-grid level predictions for Africa. Our results show that the spatio-
temporal graph convolutional neural network improves predictive perform-
ance over the benchmark. The choice of performance metric matters, as
model selection and inferences drawn, can vary by metric. Finally, event data
sometimes improves performance, and sometimes decreases performance.
Conflict dynamics tend to show strong spatial and temporal auto-correl-

ation as violence usually clusters in conflict-prone spaces and temporal
inertias tend to contribute to sustained waves of violence (Berman et al.
2017; Buhaug and Gleditsch 2008; Findley and Young 2012). Given the
dependencies of conflict over time and across space, conflict forecasting
models exhibit many non-linear relationships as well as spatial and tem-
poral auto-correlation (D’Orazio 2020). Researchers have employed differ-
ent machine learning and regression techniques to account for these
attributes (Beck, King, and Zeng 2000; Hill and Jones 2014; Cranmer and
Desmarais 2017). Yet, there is no consensus on the best modeling
approach, and researchers are constantly innovating to improve predictive
performance (Dorff, Gallop, and Minhas 2020). In this paper, we introduce
the spatio-temporal graph convolutional neural networks (ST-GCN), which
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is highly flexible and can account for spatial and temporal dependencies, to
predict conflict dynamics at the monthly-grid level for Africa. Additionally,
we focus on building an end-to-end framework with minimal feature
engineering, which means that all inputs to the model are raw features, as
shown in supplemental materials. The results show consistent improve-
ments over the benchmark models.
In addition to the standard variables in the benchmark ViEWS fatality

model, we add monthly ICEWS event data, which are available back to
1995 (Boschee et al. 2015). We expect that the fine-grained and rapidly
changing nature of event data can contribute to improve forecasting per-
formance. While some research has shown that ICEWS does not always
lead to improvements in predictive performance (Chiba and Gleditsch
2017), others have shown successful applications of the ICEWS data for
forecasting civil conflict when the features constructed from the raw event
data are theoretically informed (Blair and Sambanis 2020). ICEWS codes
events using the Conflict and Mediation Event Observations (CAMEO)
framework (Gerner, Schrodt, and Yilmaz 2009), which is a widely-used
coding scheme for event data that was optimized for studying third-party
mediation in international disputes. CAMEO was based in part on WEIS,
but designed to code events that are relevant to mediating violent conflict
and to be a framework that categorizes a broad set of political interactions
(McClelland 1976; Schrodt 2012). In this application, we use CAMEO event
counts aggregated by root code for each grid cell month, and rely on the
flexibility of our modeling technique to capture the important relationships
between fatalities and ICEWS events. The different models specifications
show these event data sometimes improve performance, but sometimes
undermine the predictive performance of the models. This assessment
depends on choice of performance metric.
Our third contribution to improve these predictive models of conflict is

to consider the continuous rank probability score (CRPS) as a model per-
formance metric (Hersbach 2000). The CRPS is a proper scoring metric
that accounts for the distribution of the prediction, not only the point pre-
diction, as is the case with mean squared error (Brandt, Freeman, and
Schrodt 2014). This metric can improve model selection, and account for
the full distribution. The results show that the choice of metric, whether
mean squared error (MSE) or CRPS, has an effect on the conclusions.

Related Work

A brief review of time-series forecasting is presented to provide general
information about methods to model sequential data. Then, we discuss
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deep learning, spatio-temporal models to address the sequential model-
ing problem.

Time-Series Forecasting

Conventional machine learning algorithms for time series forecasting are
normally divided into two categories: traditional methods, and deep learn-
ing methods (Wang et al. 2020). Traditional time-series forecasting models
include Auto Regressive Integrated Moving Average (ARIMA) and
Random Forests regression. Although these two methods allow for non-sta-
tionary patterns in a time series, they generally do not capture the long-
term dependencies within the sequence (Siami-Namini, Tavakoli, and
Namin 2018; Kane et al. 2014).
The recent implementation of deep neural networks to time-series pre-

diction has pushed the performance of sequential modeling to a new level.
There are two major types of networks that are widely used. Recurrent
Neural Network (RNN) and its variants, such as Long Short-Term Memory
(LSTM) networks, and Gated Recurrent Unit (GRU) networks have shown
great capability in modeling Natural Language Processing (NLP) related
tasks (Deng and Liu 2018). However, these types of network structures typ-
ically suffer from gradient vanishing or explosion problems when capturing
long range dependencies. In addition, estimating these models is time-con-
suming and computationally-intensive because of the nature of their itera-
tive propagation (Li et al. 2018; Zhang et al. 2018). Convolutional Neural
Networks (CNN) are widely used in the computer vision domain and have
proven to be an effective tool for sequence modeling (Binkowski, Marti,
and Donnat 2018). However, the receptive field size of one dimensional
convolution grows linearly with the number of hidden layers, which results
in very deep networks when modeling long time series sequences (Yan,
Xiong, and Lin 2018).

Spatio-Temporal Graph Neural Networks

Most ST-GCN are based on a two-step protocol. Depending on the method
used for temporal modeling, this research follows two directions: RNN-
based methods and CNN-based methods. In both cases, GCN is applied to
extract the spatial dependencies and produces a module that is concaten-
ated to the GCN to capture the temporal dependencies. For RNN-based
methods, early work directly feeds embedding from GCN to a recurrent
unit structure (Seo et al. 2018). Later work extends this structure and
includes a variety of additional strategies to improve the model perform-
ance, such as attention (Guo et al. 2019) or multi-task learning mechanisms
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(Li et al. 2018). However, one of the major shortcomings of this framework
is the gradient vanishing or explosion issue when modeling long temporal
sequences. For CNN-based methods, one dimensional convolution (Yu,
Yin, and Zhu 2018; 2018; Yan, Xiong, and Lin et al. 2018), and its varia-
tions are applied to model the temporal dependencies (Wu et al. 2019).

Proposed Models and Components

Fatality prediction for the ViEWS project can be analyzed as a typical time-
series forecasting problem, and it aims to predict future length-Q number of
fatalities based on previous P observations. In this application we map our
training data xt to predicted values yt using some forecast function f ð�Þ :

xðt�Pþ1Þ, . . . , xðtÞ½ �!
f ð�Þ

yðtþ1Þ, . . . , yðtþQÞ½ �: (1)

We focus on predicting the change in log fatalities at the PRIO-GRID
month level (pgm). Given the geographical connections between these
PRIO-GRID cells, the grid map can be defined as an undirected graph G ¼
ðV, E,AÞ, where V represents a set of cells with jVj ¼ N; E is a set of edges
indicating the connectivity between cells, and; A 2 R

N�N denotes the adja-
cency matrix of graph G: Notably, the overall raw inputs to our model are
denoted by X 2 R

P�N�d where d is the dimension of the data. Here, the
solution for the fatalities prediction requires considering both the spatial
and temporal dependencies in the data. In consequence, our approach splits
the solution into two sets of convolutional neural networks over space and
time, and combines them with a layering technique.

Spatial Dependency Modeling

The Graph Convolutional Network (GCN) is a model for mining graph
structured data (e.g., social networks, online advertising, etc. Kipf and
Welling 2017). In this implementation, we define the map of Africa as an
undirected graph, such that the nodes of the graph are the PRIO-GRID
cells. Any given cell in the map is immediately connected to its 8 sur-
rounding cells, but is not directly connected to any other cells. This rela-
tionship can be referred to as an adjacency matrix defined as A and
illustrated in Figure 1 in which the central cell (in red) is connected to a
set of adjacent cells (in green), but not directly connected to the rest of the
cells (in yellow). The GCN module handles the spatial dependencies by
passing the information to each cell from its surrounding cells using a
weighted average (convolutions) of their features.
Following Kipf and Welling (2017), the spatial dependency model for each

time step t � P has two inputs in this GCN module. The first one is a variable
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xsp 2 R
N�d0 , where d0 is the dimensions of features for each PRIO-GRID cell.

The second input is the adjacency matrix A of the graph as in Figure 1. In the
adjacency matrix, cells are sorted by acsending order regarding its PRIO-GRID
ID. Aij ¼ 1 means that ith cell is adjacent to jth cell, while Aij ¼ 0 means that
these two cells are not directly connected to each other.
For each time step t � P, the layer-wise propagation rule of the GCN

relationships Hðlþ1Þ for layer l of the neural network is:

Hðlþ1Þ ¼ r ~D
�1

2~A~D
�1

2HðlÞWðlÞ
� �

, (2)

where HðlÞ 2 R
n�d is the activation matrix in the lth layer with Hð0Þ ¼ X:

With an identity matrix IN of n dimension, the ~A ¼ Aþ IN is the adjacency
matrix of the undirected PRIO-GRID graph G with self-connections. Here
~D is the degree matrix which can be represented as ~Dii ¼

P
j
~Aij and

WðlÞ 2 R
d�d0 is a layer-specific trainable weight matrix. Here, d and d0 rep-

resent the number of feature dimensions at the lth layer for the input and
output, respectively. Finally, rð�Þ ¼ ReLUð�Þ ¼ maxð0, �Þ is a Rectified
Linear Unit (ReLU) activation function that maps across the neural net-
work layers. We choose this because it is an effective activation function in
deep learning that allows non-linearity in the neural network.
Equation (2) implies a two-step propagation rule for the GCN: (1) aggre-

gate the information from each cell’s neighbors; (2) update the neural net-
work. The ~D

�1
2~A~D

�1
2HðlÞ term in Equation (2) represents the graph

convolution, passing the neighbor information to each cell, and then aggre-
gating them based on the connection weights. The aggregating matrix is
put into a standard neural network, which multiplies it by the trainable
weight matrix WðlÞ, and feeds it to the activation function rð�Þ:

Figure 1. Demonstration of adjacency graph connections. In the adjacency matrix, the edge
weights between the red cell and green cells are 1, for a direct connections. The edge weights
between the red cell and yellow cells are 0, indicating no direct connection.
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Temporal Dependency Modeling

For the temporal aspects of the model, Temporal Convolution Networks
(TCN) and Recurrent Neural Networks (RNN) are two main deep learning
approaches (Lim and Zohren 2020). Here, we develop temporal models
based on both of the spatial and temporal blocks separately. The temporal
inputs for each node are xtp 2 R

P�d: The TCN is the method selected for
temporal modeling, and is the focus of our discussion. The Long Short-
Term model (LSTM) is introduced, with details in the Appendix.
The basic idea of TCN-based models is that temporal information is

aggregated by learnable convolution filters–similar to moving averages (Yu
et al. 2018). Figure 2 shows the basic idea of one dimensional temporal con-
volution with a kernel of size k. Basically, this operation allows the model to
explore the temporal dependency of each node for k months at a time. The
convolutional kernel Kt is designed to map the input xtp to an embedding. In
order to keep time steps embeddings consistent along time as P, we pad zero
to both beginning and end of the window so it stays the same size.
Thus the dimension of embedding after this convolution step is P � d0:

Then, an activation function is applied to this embedding and this whole
process can be abstracted as:

Hðlþ1Þ ¼ r convðHðlÞ,WðlÞÞ
� �

, (3)

where conv denotes the convolution operation, and, WðlÞ is the trainable
weight representing the convolutional kernel here with dimension
of k� d � d0:

Figure 2. Demonstration of 1 D convolution. By applying tricks such as padding, we keep the
time steps of the outputs the same as inputs. The feature dimension of outputs is determined
by the number of filters.
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Combined Spatio-Temporal Model

We apply two types of networks to model both the spatial and temporal
dependencies. Both TCN and LSTM are explored to model the temporal
dependencies. The overall model parameters are shown in Table 1. Similar to
last section, we start with the full STGCN-TCN model here and leave the
descriptions of STGCN-LSTM to the supplemental materials. Also, we include
demonstrations of the basics of STGCN-TCN and STGCN-LSTM models in
the supplemental materials.
Overall, the STGCN-TCN model is composed of stacked modules, and a

Fully Connected (FC) layer at the end to generate predictions. We stack
three identical STGCN modules altogether to jointly process graph-struc-
tured time series. Note it is possible to stack more STGCN modules
depending on the requirement of the task and the input dimension for the
first STGCN block is different from latter ones as the input features here
are the raw data with d¼ 67.
Figure 3 shows, in each STGCN block, how we stack the sub-modules in

TCN-GCN-TCN order. The spatial layer is between the two temporal layers
and links those two temporal layers together. Considering the dimensions
of both temporal and spatial layers, we purposely design it similar to a

Table 1. Notations and values of parameters.
Parameter Values Meaning

P 54 Number of past steps used for generating predictions
Q 6 Number of future steps for forecasting
d Variable Input feature dimension for each instance
d0 Variable Output feature dimension for each instance
Stcn 3 Number of stacks for STGCN modules in STGCN-TCN
Slstm 3 Number of stacks for GCN modules in STGCN-LSTM
ktp 3 Kernel size of temporal convolution

Figure 3. Architecture of STGCN-TCN. This framework consists of three STGCN blocks with a
fully-connected (FC) layer at the end to generate the forecast outputs.

INTERNATIONAL INTERACTIONS 807



“sandwich” structure. This trick is also known as a “bottleneck strategy,”
which is very useful when designing a neural network. Having such design
encourages the network to compress feature representations to best fit in
the available space, to get the best fitting of the loss function during train-
ing. Based on existing parameters, each STGCN module is capable of
aggregating 1-hop of spatial dependencies, and three months of temporal
dependencies. Since the stacked STGCN model has three STGCN modules
in it sequentially, overall our proposed framework can aggregate up to 3-
hops of spatial dependencies (so 1.5 grid degrees in any direction), and up
to 5months of temporal dependencies. These are tuneable parameters in
the model.

Demonstration of STGCN

Here we demonstrate our proposed model with a simplified example.
Suppose that there is an area with 5� 5 PRIO-GRID cells, for each of the
grid cell we have 3 dimensional features, and we have a total of 4months
of data available. Also, we want the model to have the ability of predicting
two months ahead. Therefore for the training, we have 2months of features
(X0 and X1) and 2months of labels (y2 and y3) available.
We demonstrate the model of STGCN-LSTM in Figure 4. Since there is

at most 2-hop connection with respect to the center cell x0a, here we apply
two layers of GCN module. Each GCN layer can aggregate 1-hop informa-
tion. Therefore, after the first GCN layer, those surrounding nodes infor-
mation from x1u where u 2 fa�hg are encoded into x0a: Nodes such as x1a
also aggregate its surrounding information from nodes such as x2a in this
first GCN layer. Then, we feed the embedding generated by the 1st layer to
the 2nd GCN layer. Since x1u already has x2v, where v 2 fa�pg was
encoded from the last layer, then here x0a can theoretically aggregate infor-
mation from 2-hops away. Next, we feed the embedding generated from

Figure 4. Example of STGCN-LSTM model.
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the GCN module to LSTM to follow a conventional sequence modeling
process. An example of the STGCN-LSTM is shown in Figure 4.
We demonstrate the model of STGCN-TCN in Figure 5. Each module in

STGCN-TCN is composed by TCN and GCN structures respectively. Here
layers of TCN and GCN models are concatenated together, and extract dif-
ferent types of the information in turn. More specifically, we design the
network architecture following a “bottleneck” strategy, which means that
dimension of the feature in layers decreases, then increases in this architec-
ture. Notice that in this “sandwich” structure, we have two TCN layers and
one GCN layer. Since the filter size in this example is 3, therefore, we can
aggregate information up to t – 2 and tþ 2 to representations at time t,
and consider 1-hop away information using a single TCN-GCN-
TCN module.
As evidenced by this discussion, neural networks such as the STGCN may

have many more parameters than random forest or other machine learning
algorithms commonly found in the conflict forecasting literature. To limit
the potential for overfitting, we applied three techniques. One, we stacked 3
STGCN-TCN modules to control the overall depth of the frameworks shown
in Table 1. Such architecture validates the effectiveness of our proposed
framework while keeping the network from becoming “too deep.” Two, we
compressed the dimension of embeddings in the neural network, which
leads to fewer parameters in the weight matrix. Three, we consider an early
stopping mechanism by comparing loss between the training and valid-
ation sets.

Model Metrics

For both STGCN-TCN and STGCN-LSTM models, we use mean squared
error (MSE) as the training objective function. This objective function rep-
resents the average squared differences between predictions for each grid
cell of each month to the ground truth. Mathematically, this loss function
is defined as:

Figure 5. Example of STGCN-TCN model.
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L ¼ 1
QN

XQ
i¼1

XN
j¼1

ŷðtþiÞ
j � yðtþiÞ

j

� �2
: (4)

We also consider the continuous rank probability score (CRPS) discussed
by Hersbach (2000, 560–1) and Brandt, Freeman, and Schrodt (2014). For
a continuous forecast ŷðtþiÞ

j and an observed value yðtþiÞ
j suppose we have a

pdf for some qðyÞ: Then the CRPS is

CRPSðP, ytþi
j Þ ¼

ð1
�1

PðŷðtþiÞ
j Þ�PaðŷðtþiÞ

j Þ
h i2

oytþi
j : (5)

The CRPS thus compares the cumulative distributions P and Pa where

PðxÞ ¼
ðytþi

j

�1
qðyÞdy (6)

PaðxÞ ¼ Hðx�xaÞ: (7)

Here, H is the Heaviside function: Hðx�xaÞ ¼ 0 if ðx�xaÞ<0 and
Hðx�xaÞ ¼ 1 if ðx�xaÞ � 0: This is an indicator function that compares
the total areas of the predicted and observed cumulative distributions, with
higher values indicating better alignment of the forecast and
observed densities.
The basic difference in the MSE and CRPS is that the MSE is a point

metric, which means it scores the model’s prediction but not any uncer-
tainty about that prediction. As a result, if two models make the same
point prediction then they have the same MSE. However, one model may
have high confidence in that prediction and the other may have low confi-
dence. If the prediction is correct, you would probably expect the model
with high confidence to score better than the one with low confidence. As
a proper scoring metric, CRPS would score these models differently to
account for the distribution of predictions. Brandt, Freeman, and Schrodt
(2014) expand on the use of proper scoring metrics like CRPS for conflict
forecasting.

Data and Results

Datasets: ViEWS and ICEWS

Our forecasts are based on using (1) the data features of the existing
ViEWS baseline random forest model for the log fatalities (Hegre et al.
2019), and (2) augmenting these with event data from ICEWS (Boschee
et al. 2015). A total of 18 years of monthly data are used for the results pre-
sented here, between January 2000 and December 2016 for training and all
of 2017 for validation. The out-of-sample test data are from January 2018
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through August 2020. Additional details on the ViEWS forecasting problem
can be found in Hegre, Vesco, and Colaresi (2022).
The ViEWS data includes conflict variables such as protest and non-state

violence, along with other categories from PRIO-GRID that measure landuse,
socioeconomic conditions, natural resources, distances, and accessibility
(Tollefsen, Strand, and Buhaug 2012). The full list of features we use can be
seen in the Appendix.
In addition to the 48 variables from the ViEWS data, we experiment

with ICEWS data (Boschee et al. 2015) retrieved from http://eventdata.
utdallas.edu using the UTD Event Data R package (Kim et al. 2019). For
each PRIO-GRID cell month, we aggregate the ICEWS event data into
counts for each of the 20 CAMEO (2-digit) root codes, as shown in the
Appendix (Gerner, Schrodt, and Yilmaz 2009). The ICEWS data are fine-
grained and time-variant. Being able to capture changes in the counts of
CAMEO root codes over time provides important information that a

Figure 6. ICEWS Data for South Sudan and Sudan, 2018 and 2019.
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geographic variable such as elevation would not produce because it is fixed.
Our expectation is that this class of highly flexible neural networks can
identify patterns in the event data that can improve the predictive
performance.
To illustrate the amount of change from one year to the next, Figure 6

shows the total number of instances of each CAMEO root code for South
Sudan and Sudan in 2018 and 2019. Overall, South Sudan has experienced
a decrease in the total number of events, while Sudan has experienced an
increase. South Sudan went from 991 total events in 2018 to 794 total
events in 2019. Sudan went from 2,831 total events in 2018 to 6,879 total
events in 2019. In South Sudan, we observe a reduction in protest and
other forms of conflict including violence (codes 14 and above), while in
Sudan we observe increases in these categories. In the case of protest, we
observe a drastic increase from 234 to 1,683 protest events.

Results

Table 2 shows our primary results. The MSE and CRPS are computed for a
rolling 6-months forecast (so six forecasts of each time period) based on
the previous 54months of data for each model. So, the full training period
includes data from 2000–2017 and the forecasts roll over January
2018–August 2020 for these computations.
We compare our proposed methods (STGCN-LSTM and STGCN-TCN)

with the ViEWS benchmark model. We conduct the model comparisons
with and without the inclusion of the ICEWS event data, represented by v
and vþ u respectively so that we can separate the performance of the
STGCN model variants from the ICEWS event data.
Figure 7 plots the MSE and CRPS for each model for the six forecast

periods. Recall that for MSE/CRPS metrics, smaller/larger values are better
when selecting across models and input data. No single model strictly dom-
inates all others. However, using the MSE, the STGCN-TCN offers
improvements in predictive performance over the STGCN-LSTM and trains
in about 45 minutes compared to nine hours. The STGCN-TCN with the
CAMEO event data outperforms the model without (contra, Blair and
Sambanis 2020). So, we select the STGCN-TCN model with the ViEWS
and ICEWS event data. It is a data-driven, saturated model, and the one
we employ for our submitted forecasts for each of the ViEWS tasks (Hegre,
Vesco, and Colaresi 2022; Vesco et al. 2022).
Alternatively, panel (b) of Figure 7 shows that when we use a proper forecast

scoring rule as suggested by Brandt, Freeman, and Schrodt (2014), the model
and variable selection rankings are different. While there is clear evidence of
the value of the STGCN models over the benchmark, there is mixed evidence

812 P. T. BRANDT ET AL.



Ta
bl
e
2.

Co
m
pa
ris
on

s
of

re
su
lts

be
tw
ee
n
ou

r
pr
op

os
ed

m
et
ho

ds
an
d
ba
se
lin
e
m
et
ho

ds
.

M
et
ric
s

RF
re
gr
es
so
r

ST
G
CN

-L
ST
M

(b
48
-w
48
)

ST
G
CN

-T
CN

(b
32
-w
60
)

H
ar
dw

ar
e

CP
U
:i
9-
79
20
X

G
PU

:Q
ua
dr
o
RT
X
80
00

Fe
at
ur
es

v
v
þ
u

v
v
þ
u

v
v
þ
u

Tr
ai
ni
ng

Ti
m
e

�1
0
m
in

�1
0
m
in

�9
h
(5
0
ep
oc
hs
)

�9
h
(5
0
ep
oc
hs
)

�4
5
m
in

(5
0
ep
oc
hs
)

�4
5
m
in

(5
0
ep
oc
hs
)

M
et
ric
s

M
SE

CR
PS

M
SE

CR
PS

M
SE

CR
PS

M
SE

CR
PS

M
SE

CR
PS

M
SE

CR
PS

Ti
m
e
st
ep
s

1
2.
86

�
10

–
2

9.
96

�
10

–
3

2.
78

�
10

–
2

0.
13

�
10

–
3

2.
59

�
10

–
2

4.
47

�
10

–
2

2.
37

�
10

–
2

1.
25

�
10

–
2

2.
62

�
10

–
2

3.
25

�
10

–
2

2.
49

�
10

–
2

3.
62

�
10

–
2

2
2.
93

�
10

–
2

1.
14

�
10

–
2

2.
85

�
10

–
2

1.
15

�
10

–
2

2.
31

�
10

–
2

2.
25

�
10

–
2

2.
42

�
10

–
2

1.
66

�
10

–
2

2.
43

�
10

–
2

3.
19

�
10

–
2

2.
27

�
10

–
2

1.
65

�
10

–
2

3
2.
97

�
10

–
2

1.
20

�
10

–
2

2.
89

�
10

–
2

1.
43

�
10

–
2

2.
59

�
10

–
2

4.
47

�
10

–
2

2.
53

�
10

–
2

1.
32

�
10

–
2

2.
67

�
10

–
2

4.
87

�
10

–
2

2.
26

�
10

–
2

3.
21

�
10

–
2

4
2.
96

�
10

–
2

1.
25

�
10

–
2

2.
98

�
10

–
2

1.
19

�
10

–
2

3.
00

�
10

–
2

8.
36

�
10

–
2

2.
55

�
10

–
2

3.
00

�
10

–
2

2.
29

�
10

–
2

2.
73

�
10

–
2

2.
43

�
10

–
2

3.
36

�
10

–
2

5
2.
96

�
10

–
2

1.
29

�
10

–
2

2.
92

�
10

–
2

1.
32

�
10

–
2

3.
07

�
10

–
2

5.
60

�
10

–
2

2.
63

�
10

–
2

3.
81

�
10

–
2

2.
26

�
10

–
2

8.
07

�
10

–
3

2.
41

�
10

–
2

2.
65

�
10

–
2

6
3.
00

�
10

–
2

1.
29

�
10

–
2

2.
95

�
10

–
2

1.
39

�
10

–
2

3.
07

�
10

–
2

7.
66

�
10

–
2

2.
47

�
10

–
2

2.
26

�
10

–
2

2.
51

�
10

–
2

2.
44

�
10

–
2

2.
30

�
10

–
2

2.
41

�
10

–
2

“v
”
re
pr
es
en
ts

“V
iE
W
S”

da
ta
se
t
fe
at
ur
es

an
d
“u
”
re
pr
es
en
ts

“I
CE
W
S/
U
TD

Ev
en
t
D
at
a”

fe
at
ur
es
.

INTERNATIONAL INTERACTIONS 813



about the two STGCN models and the event data contributions. Overall, the
STGCN-LSTM without the event data performs best, and for each forecast
period it performs better than the STGCN-LSTM with event data.
To further assess the potential contribution of the ICEWS variables for

the ViEWS forecasting problem, we compared the MSE contributions of
different sets of variables using a stepwise elimination approach similar to
Ward, Greenhill, and Bakke (2010). We grouped the variables into six cate-
gories, most of which are based on Tollefsen, Strand, and Buhaug (2015):
violence and instability (G1), landuse (G2), socioeconomic (G3), resource

Figure 7. Model and data fit comparisons. (a) MSE results. (b) CRPS results.

Figure 8. Marginal contributions plot for each group of covariates.
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(G4), distance, area, and accessibility (G5), and CAMEO (G6). The varia-
bles in each category can be seen in the Appendix.
Figure 8 shows the marginal contributions for each group. The steps pro-

ceed in a backwards elimination fashion. At each step, we remove each fea-
ture group, one at a time, and calculate the MSE after retraining with the
remaining features. We do this for each forecasting length, 1 through 6,
and take the average MSE. The group with the largest increase in MSE is
the one with the greatest contribution at that step. This group is then
removed and we repeat the process for the next step.
The three most important feature groups are G1, G6, and G2. G1 is our

violence and instability group and contributes the most to our forecasts. This
is consistent with findings reported in Vesco et al. (2022) and D’Orazio and
Lin (2022) for this forecasting window. After eliminating the conflict features
in Step 1, the CAMEO variables (G6) have the largest contribution in Step 2.
This suggests that these time-variant event measures contribute more than
the other slow-moving or invariant indicators, at least when using the MSE
which is one of the main ViEWS scoring metrics (Hegre, Vesco, and
Colaresi 2022; Vesco et al. 2022).
Additional results for ViEWS Task 2 and Task 3 are shown in

the Appendix.

Exploration

Using the STGCN-TCN with the ICEWS event data, we produced true, a
priori forecasts for each month from October 2020 through March 2021
(ViEWS Task 1). The level of forecasted fatalities for October and March is

Figure 9. Real predictions for Oct. 2020 and Mar. 2021.
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shown in Figure 9, and the forecasted change in fatalities is shown in
Figure 10.
Looking at Figure 9, violence is expected to occur primarily in four

regions: Nigeria’s Borno State and other areas near Lake Chad; South
Sudan and the southern area of Sudan; the southern regions of Somalia
including border areas with Kenya and Ethiopia; and the DRC’s eastern
border with Uganda, Rwanda, and Burundi between Lakes Albert and
Tanganyika. As we can see in Figure 10, violence in Sudan is expected to
get worse, as there are many grids shaded red and only a few that are blue.
In the other three areas, there are several grids shaded darker blue, which
implies larger expected reductions.
Another area of interest is the border of Mozambique and Tanzania.

Violence has intensified in this region recently (Campbell 2020; Blake 2020).
Our model forecasts reductions here, as it does not predict instances of state-
based violence. It is worth noting that there is a distinction in state-based vio-
lence and non-state violence, and our model offers no forecasts on the latter.
Observed and predicted violence for the Mozambique-Tanzania border

area, and the Lake Chad region, are shown in Figure 11. To create this
plot, we used the natural log of the sum total of state-based fatalities for all
grids in each region. In both instances, the observed violence, which spans
October 2019 through September 2020, is relatively high. Forecasted vio-
lence, which is shown from October 2020 through March 2021, is consider-
ably lower.
Across Africa, our model forecasts decreases in violence in 3,690 grids

and increases in violence in 6,987 grids for October 2020. However, the
largest expected increase is 0.705, while the largest expected decrease is
5.12. A similar pattern holds for all months from October through March,

Figure 10. Delta predictions for Oct. 2020 and Mar. 2021.
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in that the largest forecasted increase is a smaller number (maximum is
0.862) while the largest expected decrease is a larger number (maximum is
5.19). However, the ratio of forecasted decreases-to-increases changes. For
October the ratio is about 0.53:1, and for March it is flipped to
about 1.71:1.

Conclusion

We explored three different model components to improve predictive per-
formance over the ViEWS benchmark: a class of neural network that
accounts for spatial and temporal dependencies, the use of CAMEO-coded
event data, and the CRPS which is a proper scoring metric. Our experi-
ments show that, when using MSE as performance metric, the best per-
forming model is the STGCN-TCN with event data measures. If we were
to use the CRPS for model selection, the results would not be entirely con-
sistent with that of MSE.
Each of these areas–algorithms, measures, and metrics–provide opportu-

nities for future research to improve our understanding of patterns of vio-
lence. By analyzing the dynamics of violence at the grid-month level in
Africa, our results consistently show that neural networks taking into con-
sideration spatial and temporal dependencies offer improvements over
more traditional machine learning methods. Our model can be further
improved in three directions: model complexity, hyperparameters, and
interpretability.
Model complexity: Most existing frameworks are based on a two-step

protocol: first, apply Graph Convolutional Networks (GCN) module to
extract the spatial dependencies out of the graph structured data; then,

Figure 11. Records and predictions for border areas.
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incorporate a Recurrent Neural Network (RNN) module (Li et al. 2018)
or a Convolutional Neural Network (CNN) module to model the tem-
poral dependencies (Wu et al. 2019). Even though this two-step paradigm
typically goes unquestioned, Lea et al. (2016) argue that the model suffers
from the loss of valuable information between steps. Also, for temporal
dependency modeling, CNN-based methods normally require multiple
1 D convolution layers to properly learn temporal information from long
sequences, which could lead to a very deep neural network structure.
Therefore, a possible solution is to design a unified spatio-temporal graph
neural network for time series forecasting. The key idea is that if we can
construct an appropriate graph over sequences of data, including both
spatial and temporal information, then a single graph neural network
could be trained to capture both dependencies simultaneously. Such a
model could reduce the types of neural network structure in the solution
from two to one, which could dramatically decrease the complexity
of model.
Hyperparameters: Tuning parameters for neural networks can be com-

plicated, especially when the model is very deep. These models require a
lot of computational resource, leading to very long training times.
Therefore, trying all hyperparameter combinations is normally not possible.
In this paper, we initially set hyperparameters like learning rate, batch size,
and the dimension of the GCN using values from similar models in other
applications. Then, we prepare candidate sets for these hyperparameters
surrounding the initial settings, and conducted grid search for the best
among candidates. However, we were unable to cover a very large portion
of the search space due to the complex structure of the model. Recently,
some researchers argue that by combining grid search with Bayesian
Optimization algorithms, it is possible to get the optimal parameters in a
relatively shorter period (Frazier 2018). The key idea of using Bayesian
Optimization on the hyperparameters is that the prior knowledge of model
performance could imply the posterior probability of best settings, which
basically provides line of sight about which directions to adjust those
hyperparameters.
Interpretability: Normally neural networks are considered to be a black-

box model due to their nonlinear nature induced by deep networks struc-
tures. This observation also applies to our model. However, for political sci-
ence studies, reserving the interpretability at a certain level is appreciated
when accurate forecasts are made, since reasoning is really important dur-
ing the policymaking process. During our experiment, we met difficulties,
mainly regarding computation time, when applying state-of-the-art deep
learning interpretable models, such as SHAP. We plan to further investigate
potential solutions to address this problem.
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Event data continue to offer promise in the field of conflict forecasting,
as they are a prime source of fine-grained, time-variant measures. While
ICEWS offers high-quality event data coded using automated, dictionary-based
methdos, there are new techniques emerging in the field of natural language
processing that appear promising. Specifically, transformer models may be able
to improve the validity of event data substantially, reducing noise and improv-
ing performance of models that incorporate event measures (Parolin
et al. 2020).
The application of proper scoring metrics like the CRPS is not new to

the ViEWS team, as the TADDA measure is itself a proper scoring metric.
As our results show, and as the differences in MSE and TADDA show in
the evaluation (Hegre, Vesco, and Colaresi 2022; Vesco et al. 2022), choice
of metric matters as different models perform differently based on which
measure is chosen. Importantly, there is no inherently “correct” perform-
ance measure. While researchers should be mindful of the differences, they
should also try to align the selection of performance metric with the end-
goal of the model. If the model is intended to be used by analysts in gov-
ernment, for example, then the analysts should decide on the performance
measure that best matches their goals for the model. MSE is simple to
understand, and thus is a useful generic metric for communicating results.
But as our application of CRPS and the ViEWS’ TADDA measure (Hegre,
Vesco, and Colaresi 2022) show, the selected model is not always consistent
with other measures.
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